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The galaxy power spectrum contains information on the growth of structure, the growth rate
through redshift space distortions, and the cosmic expansion through baryon acoustic oscillation
features. We study the ability of two proposed experiments, BigBOSS and JDEM-PS, to test the
cosmological model and general relativity. We quantify the latter result in terms of the gravitational
growth index γ, whose value in general relativity is γ ≈ 0.55. Significant deviations from this
value could indicate new physics beyond the standard model of cosmology. The results show that
BigBOSS (JDEM-PS) would be capable of measuring γ with an uncertainty σ(γ) = 0.043 (0.054),
which tightens to σ(γ) = 0.031 (0.038) if we include Stage III data priors, marginalizing over
neutrino mass, time varying dark energy equation of state, and other parameters. We also carry
out studies of the influence of redshift range, resolution, and treatment of nonlinearities to enable
further improvement.

I. INTRODUCTION

Surveys of large-scale structure in the universe pro-
vide a rich resource for testing our understanding of cos-
mology. Future surveys will cover nearly the full sky to
redshifts far deeper than are currently studied, mapping
out some 10 billion years of history. The great statis-
tical power and leverage from depth will allow detailed
examination of the cosmological framework by carrying
out a simultaneous fit of a substantial suite of relevant
parameters. One particularly attractive prospect is the
capability to put to the test the predictions of Einstein
gravity for the growth of structure and its consistency
with the cosmic expansion history.

We consider next-generation surveys mapping the dis-
tribution of galaxies in three dimensions to redshifts of
order z = 2. A goal of this study is to determine the
capabilities of such surveys. In particular we aim to esti-
mate realistic constraints from a global parameter fit on
the gravitational growth index γ, which can character-
ize deviations from general relativity. The second goal is
to examine how the survey characteristics such as red-
shift range, resolution, and galaxy selection affect those
capabilities.

In Sec. II we review the formalism for extracting cos-
mological information from galaxy correlation measure-
ments in terms of the matter power spectrum, and discuss
the anisotropic distortion due to measuring in redshift
space (rather than position space). We discuss the rele-
vant set of cosmological parameters in Sec. III and their
influence on the matter power spectrum. The results are
analyzed with emphasis on the role of degeneracies be-
tween factors that influence growth, including the gravi-
tational growth index, the dark energy equation of state,
and neutrino mass. In Sec. IV we turn to astrophysical
and survey characteristics and analyze the effect of the
bias level of the selected galaxy populations, the form of
the small-scale velocity damping, the spectroscopic sur-
vey redshift resolution, and the redshift range of the sur-

vey. This allows quantitative comparison of the capabili-
ties of next-generation (Stage IV) experiments from both
ground and space, as well as nearer term (Stage III) ex-
periments. We conclude in Sec. V with a summary of the
prospects for testing the standard cosmology and reveal-
ing clues to dark energy or the breakdown of Einstein
gravity.

II. METHODOLOGY

The future dark energy experiments considered in this
paper aim at measuring galaxy positions in three dimen-
sions to study baryon acoustic oscillations and other as-
pects of the matter power spectrum including its evolu-
tion through the growth of structure. The matter power
spectrum contains important cosmological information
through its evolving amplitude, its shape including the
turnover reflecting the transition from radiation to mat-
ter domination and the suppression due to massive neu-
trino free streaming, and the baryon acoustic oscillation
features serving as a standard ruler.

One aspect of particular interest is the distorted,
anisotropic mapping between the real space density field
and the measurements in redshift space, caused by pe-
culiar velocities [1, 2]. This redshift space distortion has
attracted recent attention as a possible technique for de-
tecting deviations from general relativity (see [3, 4, 5]
for early work) as it depends on the relation between
the density and velocity fields, which can be altered by
modifying the gravitational theory.

Thus the observed galaxy power spectrum contains
several types of cosmological information. The autocor-
relation function ξ(r) is defined as the excess probability
of finding masses at a separation r:

dP = ρ̄(1 + δm)dV , (1)

dP12 = ρ̄2(1 + ξ(r))dV1dV2 , (2)

where ρ̄ is the mean mass density and δm ≡ (ρ − ρ̄)/ρ̄ is
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the density contrast. The mass power spectrum is then
the Fourier transform of the autocorrelation function:

P (k) =

∫

d3
r ξ(r) eik·r , (3)

with k the wave vector. Due to spatial isotropy, only the
magnitude k will enter.

We do not observe the power spectrum in real space,
however, but obtain the radial position through redshift
measurements, convolving the real distance with addi-
tional redshifts due to peculiar velocities. This leads to
the redshift space mass power spectrum P̃ gaining an
angular dependence through the linear Kaiser factor [2]
multiplying the isotropic, real space mass power spec-
trum P (k):

P̃ (k, µ) = (b + fµ2)2P (k), (4)

where µ is the cosine of the angle that k makes with the
line of sight. For notational simplicity, we suppress the
tilde from now on. We work in the linear regime, where
the continuity equation between the galaxy peculiar ve-
locity field and the galaxy mass overdensity is linear (see
for example [1]).

The dimensionless growth rate f is given by

f =
d lnD

d ln a
, (5)

where a is the scale factor, and D(a) is the growth factor,
i.e. the amplitude δm(k, a) ∝ D(a) or P (k) ∝ D2(a). We
also need to take into account that galaxies, not directly
mass density, are observed. The bias b relates the galaxy
overdensity δg to the total mass overdensity through δg =
bδm.

By looking at the angular dependence of the power
spectrum at each k,

P (k, µ) ∝ σ2
8(b+fµ2)2 = σ2

8b2 +2σ2
8bfµ2 +σ2

8f
2µ4 , (6)

where σ8 is the normalization of the power spectrum, we
can in principle fit for b2σ2

8 , bfσ2
8 and f2σ2

8 , hence allow-
ing us to measure b and f provided we have an appro-
priate measurement of σ8. This is challenging in practice
due to noise. Another possible route to separating out
the bias involves the use of higher order correlation func-
tions [6].

Although we have three measurable quantities (the
three coefficients of the fourth order polynomial in Eq. 6)
and three unknowns, we cannot determine all of them be-
cause the second is the geometric mean of the other two.
This is because we work in the linear regime and general
relativity, where the galaxy density and peculiar velocity
fields are perfectly correlated. But should one of these
hypothesis be relaxed (as in modified gravity models or
with non-linearities e.g. Finger-of-God effects), we need
to introduce the correlation coefficient between the fields
[7, 8]

r(k) =
Pgv(k)

√

Pgg(k)Pvv(k)
, (7)

where the subscript g denotes the galaxy density field,
and v the divergence of the peculiar velocity field. Ideally
this correlation would be predicted by the physical theory
[9]; allowing r instead to be completely free significantly
degrades the constraints on f [7]. We do not consider
this situation further in this article, instead assuming
the standard correlation of unity, since we restrict our
analysis to the linear regime and many classes of gravity
theory maintain the correlation in this regime.

To incorporate a measure of the sensitivity to the grav-
ity theory we use the gravitational growth index formal-
ism of [10], which parameterizes the growth factor as

D(a) = a exp

(
∫ a

0

[Ωm(a′)γ − 1]
da′

a′

)

, (8)

so

f = Ωm(a)γ , (9)

where

Ωm(a) =
Ωma−3

∑

i Ωi exp
(

3
∫ 1

a
da′

a′
[1 + wi(a′)]

) (10)

is the ratio of matter density to the total energy den-
sity at scale size a = (1 + z)−1. The summation runs
over all the different components of the universe: matter,
dark energy, curvature and radiation. The gravitational
growth index γ will be a parameter of key interest. It can
distinguish other theories from Einstein gravity (see for
example [5, 10, 11]). The merit of a large scale structure
survey in terms of its gravitational probative power may
be conveniently quantified by the uncertainty σ(γ). The
Figure of Merit Science Working Group [12] found that
for the suite of future Stage III experiments, expected
to be completed before the proposed Joint Dark Energy
Mission (JDEM) program, the anticipated uncertainty is
σ(γ) = 0.21.

The standard technique for making such parameter es-
timation predictions is the Fisher matrix [13]. For a sur-
vey covering a volume V0 where the mean galaxy number
density is n̄, the element of the Fisher matrix for param-
eters pi and pj is obtained as an integral over the space
of modes k [14], by:

Fij =
V0

2(2π)3

∫

d3k

(

n̄P (k, µ)

1 + n̄P (k, µ)

)2
∂ lnP

∂pi

∂ lnP

∂pj
.

(11)
The accessible modes are weighted due to shot noise 1/n̄
according to an effective volume [15]:

Ve(k, µ) = V0

(

n̄P (k, µ)

1 + n̄P (k, µ)

)2

. (12)

The constraint leverage comes mostly from regions where
n̄P (k, µ) >

∼ 1, that is Ve ≈ V0.
In order to avoid the uncertainties associated with

treatment of non-linearities, we truncate the Fisher ma-
trix integral at a maximum value k+. We take k+ =
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0.1 h/Mpc, which is the scale where departures from lin-
ear theory begin to become significant (see, e.g., the anal-
ysis of [16]). See Sec. IVB for a further investigation of
non-linear effects.

The information about γ comes from two different
parts of the power spectrum. The real space, isotropic
part, corresponding to no redshift space distortions, or
µ = 0 (observations transverse to the line of sight) in
the linear regime, is proportional to the growth factor
squared:

P⊥(k) = b2P (k) ∝ D(a)2. (13)

Note that surveys lacking sufficient redshift resolution are
only sensitive to the transverse modes due to smearing
along the line of sight (see, e.g., [17]). Using Eq. (8), the
information carried by this part involves

∂ lnP⊥

∂γ
= 2

∫ a

0

Ωm(a′)γ ln Ωm(a′)
da′

a′
. (14)

The redshift space distortions in the power spectrum give
further information through the parameter f , which with
Eqs. (5) and (8) reads

f = Ωm(a)γ . (15)

Therefore, if we define the anisotropic part alone as

Paniso(k, µ) ≡ 2bfµ2 + f2µ4, (16)

it carries information on γ through

∂ lnPaniso

∂γ
= ln Ωm(a) +

Ωm(a)γ ln Ωm(a)µ2

2b + Ωm(a)γµ2
. (17)

This factor gives a sense of the information from the red-
shift distortions.

Because the measurements become noisier when subdi-
vided into angular bins, and because a substantial major-
ity of the information resides in the spherically averaged
power spectrum [18], analyses frequently use the one di-
mensional, spherically averaged power spectrum

Psph(k) = P (k)

(

b2 +
2

3
bf +

1

5
f2

)

. (18)

This incorporates information from both the original
isotropic power spectrum and the redshift distortion
anisotropies, and may be most familiar in terms of the
DV ∝ [D2

A/H(z)]1/3
∝ (k2

⊥k‖)
−1/3 factor of [19]. In par-

ticular, the sensitivity to γ arises from

∂ ln Psph

∂γ
=

∂ lnD2

∂γ
+

[10bΩm(a)γ + 6Ωm(a)2γ ] lnΩm(a)

15b2 + 10b Ωm(a)γ + 3Ωm(a)2γ
.

(19)
In Sec. III, we will investigate the relative importance of
the transverse, anisotropic, spherically averaged, as well
as full versions of the power spectrum for constraints on
the gravitational growth index and other parameters.

III. PARAMETER CONSTRAINTS

The constraints on γ expected from nearer term (Stage
III) surveys are not that informative, as mentioned, with
σ(γ) = 0.21 compared to a difference ∆γ = 0.13 [10, 11,
20] between general relativity and DGP gravity [21, 22]
for example. We therefore turn to Stage IV experiments
and assess their potential for a more accurate test of the
standard cosmological model.

We consider two versions of Stage IV power spectrum
experiments: BigBOSS [23] is a proposed ground-based
wide field spectroscopic survey and JDEM-PS [24] is a
proposed space-based wide field grism survey. Both aim
at measuring the three dimensional spatial distribution
of galaxies to study baryon acoustic oscillations and the
growth of structure. Both experiments would use the
Stage III experiment BOSS [25], detecting luminous red
galaxies (LRG) out to z = 0.7, as a springboard to higher
redshifts. BigBOSS would extend mapping of LRG out
to z = 1 and to the southern sky and both experiments
would supplement LRG with different classes of emission
line galaxies (EL) out to z ≈ 2.

Following [23, 24, 26], we give in Table I the red-
shift range, survey solid angle Ωsky , expected target
galaxy bias factors bLRG and bEL, mean galaxy num-
ber density n̄, and wavelength resolution R = λ/∆λ of
the spectrographs to be used (so the redshift resolution
σz = δz/(1 + z) = R−1).

BigBOSS LRGa EL

z range 0 − 1 1 − 2

Ωsky (deg2) 24000 24000

n̄ (h/Mpc)3 3.4 × 10−4 3.4 × 10−4

b 1.7 0.8 − 1.2

R ≥ 2300 ≥ 2300

JDEM-PS LRGa EL

z range 0 − 0.7 0.7 − 2

Ωsky (deg2) 10000 20000

n̄ (h/Mpc)3 3.4 × 10−4 19.5 × 10−4

b 1.7 0.8 − 1.2

R ≈ 2000 ≥ 200

TABLE I: Survey specifications for the Stage IV experiments
BigBOSS and JDEM-PS. aUses northern hemisphere (10000
deg2) LRG z = 0 − 0.7 from BOSS [25].

To calculate the power spectrum as a function of red-
shift and cosmological parameters we used the Boltz-
mann equation code CMBeasy [27]. Using two sided
derivatives together with convergence tests we can ac-
curately calculate the sensitivity derivatives with respect
to each parameter. These then enter into the Fisher ma-
trix calculations of the parameter estimation, taking into
account the correlations between parameters. The data
points are taken to be the power spectrum evaluated at
the centers of 10 (or 11) redshift bins from z = 0 − 2,
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i.e. at zi = 0.2i + 0.1. For JDEM-PS, we divide the bin
containing z = 0.7 into two pieces: z = [0.6, 0.7] using
LRG and z = [0.7, 0.8] using EL.

The parameter set involves 9 parameters. Note that
when testing the gravitational framework, i.e. exploring
beyond-Einstein gravity through quantitative estimation
of γ, it is crucial to include all parameters that could
act in a similar manner on the growth and growth rate.
Therefore we include a time varying dark energy equation
of state w(a) = w0 + wa(1 − a) and massive neutrinos.
The parameter list, and the fiducial value around which
the Fisher matrix expands, is

1. γ = 0.55, gravitational growth index

2. bLRG, the bias for LRG (see Table I)

3. bEL, the bias for EL (see Table I)

4. ΩDE = 0.744, dark energy density today

5. Ων = 0.002, massive neutrino energy density today

6. ωb = Ωbh
2 = 0.0227, reduced baryon energy den-

sity today

7. h = H0/(100 km/s/Mpc) = 0.719, reduced Hubble
constant

8. w0 = −0.99, dark energy equation of state today

9. wa = 0, dark energy equation of state time varia-
tion

The values for ΩDE , ωb and h are WMAP-5 best fit
parameters [28]. Note that the fiducial γ = 0.55 is the
value predicted by General Relativity for ΛCDM (and is
quite insensitive to the dark energy equation of state); the
fiducial w0 = −0.99 is taken to avoid issues of stepping
over w = −1. Dark energy perturbations are included in
CMBeasy. We assume there is no spatial curvature. In
the remainder of this section we take the fiducial bEL =
0.8, and we will investigate the effect of a different fiducial
in the next section. Note that the neutrino energy density
fraction is related to the sum of the neutrino masses by

Ωνh2 =
∑

mν/94 eV. For a reasonable current upper

bound
∑

mν ≤ 0.3 eV [29], this implies Ων ≤ 0.006. We

take Ων = 0.002, or
∑

mν = 0.1 eV as the fiducial.

Adding together the information from the redshift
slices independently (note this is not generally a good
approximation for slices thinner than our ∆z = 0.2), we
obtain the full Fisher matrix. We do not explicitly add
any CMB information (except later when adding Stage
III Fisher matrices, which assume Planck data).

Concentrating on testing the gravitational growth in-
dex, we now explore in more detail what affects the con-
straints on γ using only information from the power spec-
trum. The constraints are computed to be

σ(γ)BigBOSS = 0.043 (20)

σ(γ)JDEM−PS = 0.054 . (21)

The importance of including dark energy properties, neu-
trino masses, and other cosmological parameters in the
parameter estimation is highlighted by the much tighter
constraints obtained if we neglect their influence, includ-
ing only γ itself and the galaxy biases. In this case we
obtain overly optimistic estimates: σ(γ)BigBOSS = 0.0096
and σ(γ)JDEM−PS = 0.0078. Thus, taking into account
the correlations with other cosmological parameters is es-
sential. The correlation matrices for the two experiments
are shown in Tables II and III; we have replaced the unit
diagonal with the uncertainties σi on each parameter.

To obtain an overall view of how tightly correlated
a parameter is with the other variables, we employ the
global correlation coefficient – the largest correlation of
that parameter with any linear combination of all other
parameters [30]. This is given by

ri =

√

1 −
1

Fii (F−1)ii
. (22)

We show those vectors in Table IV. Note the high degree
of correlation, indicating the importance of crosschecks
by other data and techniques.

Examining the marginalized parameter estimations,
we see that as expected the power spectrum informa-
tion is especially strong in constraining ΩDE and h. One
can determine at the ∼ 10% level the growth index γ
and present equation of state w0, while wa and Ων have
uncertainties of order unity. The growth index and equa-
tion of state parameters estimation is similar for the
two experiments: γ = 0.55 ± 0.043, w0 = −0.99 ± 0.16
and wa = 0 ± 0.47 for the ground-based BigBOSS and
γ = 0.55 ± 0.054, w0 = −0.99 ± 0.14 and wa = 0 ± 0.37
for the space-based JDEM. We find the usual high anti-
correlation between w0 and wa, and a strong correlation
between γ and (w0, wa).

Regarding the neutrino mass parameter, neutrino os-
cillation experiments indicate that neutrinos do have
mass [31, 32], but this is not always included in parameter
estimation despite its correlations. We demonstrate the
effect of neglecting this ingredient, finding that it gives
overly optimistic constraints on γ by a factor of three to
four. The results in Table V illustrate the influence of
neutrinos in three ways, including their mass as a free
parameter, including their mass but fixing its value, and
neglecting their mass so they act as a relativistic species.
At the level of neutrino energy density used as fiducial,
Ων = 0.002, and over the range k < 0.1 h/Mpc used
for the power spectrum, the parameter value does not
strongly affect determination of γ and is mainly degener-
ate with the bias parameters. However it is crucial to in-
clude neutrino mass because the difference between treat-
ing them as relativistic vs. nonrelativistic energy density
is still important.

It is interesting to explore where the main informa-
tion on the gravitational growth index comes from be-
tween the transverse and anisotropic parts (Eqs. 13 and
16), and to compare with the spherically averaged case
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TABLE II: BigBOSS correlation matrix for the parameters (γ, bLRG, bEL, ΩDE, Ων , ωb, h, w0, wa). The off-diagonal elements
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TABLE III: JDEM-PS correlation matrix for the parameters (γ, bLRG, bEL, ΩDE, Ων , ωb, h, w0, wa). The off-diagonal elements
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TABLE IV: Vectors of the global correlation coefficients for
the parameters (γ, bLRG, bEL, ΩDE , Ων , ωb, h, w0, wa) for Big-
BOSS and JDEM-PS.

Case BigBOSS JDEM-PS

Massive neutrinos, Ων free 0.043 0.054

Massive neutrinos, Ων fixed 0.042 0.053

Relativistic neutrinos 0.014 0.013

TABLE V: Gravitational growth index uncertainty σ(γ) un-
der different treatments of neutrino mass.

(Eq. 18). Note that we have defined the anisotropic part
to isolate the redshift distortion, imagining one could re-
move all shape (k) dependence and only focus on the
angular dependence. This seems unrealistic and is only

included as a toy model to highlight the γ influence on
the velocity factor f ; the constraints on γ become 0.023
for BigBOSS and 0.021 for JDEM-PS (note that the pa-
rameter space is much reduced, with the baryon density,
neutrino density, and h not entering). Table VI shows
the more realistic parts.

Case BigBOSS JDEM-PS

Transverse (Eq. 13) 0.126 0.128

Spherically averaged (Eq. 18) 0.081 0.065

Full (Eq. 4) 0.043 0.054

TABLE VI: Gravitational growth index uncertainty σ(γ) us-
ing different parts of the power spectrum.

Note the full power spectrum with redshift space dis-
tortions has the greatest information on the growth in-
dex, with a factor 2 better constraints than the spheri-
cally averaged power spectrum and a factor 3 better than
the transverse (zero redshift distortion or 2D) modes, for
the BigBOSS case. BigBOSS achieves these improve-
ments due in large part to its high resolution that lets it
probe the redshift distortions more successfully.

Finally, a Stage IV power spectrum experiment will not
exist in isolation. Previous experiments, using several
methods, will be carried out and the complementarity
between methods offers leverage to tighten the cosmol-
ogy constraints. To study the impact of Stage III pri-
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ors on the parameters we use the Stage III matrix given
by the FoMSWG website [12] (without double counting
the BOSS information), rotated into the (w0, wa) basis.
Summing the Fisher matrices of our analysis and of Stage
III, we extract the constraints on cosmology shown in Ta-
ble VII.

BigBOSS+III JDEM-PS+III

σ(γ) 0.031 0.038

σ(w0) 0.105 0.094

σ(wa) 0.340 0.289

TABLE VII: Gravitational growth index and dark energy
equation of state uncertainties provided by each of the Stage
IV experiments in conjunction with Stage III.

The complementarity of the other methods (supernova
distances, CMB power spectra, and weak lensing shear)
from Stage III in breaking degeneracies tightens the con-
straints on γ produced by BigBOSS and JDEM-PS by
a factor of 1.4. Stage IV experiments using these tech-
niques will further reduce the uncertainties on γ, either
directly or indirectly through constraining other, corre-
lated cosmological parameters.

BigBOSS from the ground and JDEM-PS from space
appear comparable in their cosmology reach. For the
marginalized uncertainties, BigBOSS does better on the
gravitational growth index γ by a factor 1.26 while
JDEM-PS does better on the equation of state time vari-
ation wa by a factor 1.27. We exhibit the joint 68% confi-
dence contours in Fig. 1 where we see that the JDEM-PS
contours are slightly fatter, having an overall area 1.23
times the BigBOSS constraints. Treating the inverse area
of the parameter estimation contours as a figure of merit
(FoM), Table VIII lists the ratios of FoM’s for the Big-
BOSS plus Stage III and JDEM-PS plus Stage III exper-
iments.

BigBOSS/JDEM-PS BigBOSS+III/JDEM-PS+III

γ, ΩDE 0.93 0.99

γ, w0 1.16 1.20

γ, wa 1.21 1.23

w0, wa 0.88 0.86

TABLE VIII: The ratios of the figures of merit (inverse ar-
eas) are given for various parameter spaces listed in the first
column. The second column shows the ratios for the Stage
IV experiments alone; the third column includes Stage III
information for each of them.

IV. SURVEY CHARACTERISTICS

In this section we investigate the influence of different
survey parameters in the determination of the gravita-
tional growth index γ. We discuss the influence of the
redshift resolution σz = R−1, the model for non-linear

FIG. 1: 1σ joint confidence contours for the gravitational
growth index γ and equation of state time variation wa,
marginalizing over the other parameters, are plotted for Big-
BOSS and JDEM-PS with and without Stage III information.

redshift distortions (i.e. the small scale velocities appear-
ing in the Finger-of-God effect), the uncertainty in the
bias parameter bEL shown in Table I, and in particular
the survey redshift range and design. We will use the
information coming from the full power spectrum as de-
fined in Eq. (4). To clarify the effects we do not include
information from Stage III experiments.

A. Redshift Resolution

The effect of the uncertainty in the redshift measure-
ment is incorporated by including a Gaussian suppression
factor in the power spectrum in k-space:

Pdamp(k, µ) = P (k, µ) e−k2µ2σ2
z
c2/H(z)2 . (23)

We include this factor in the Poissonian noise factor en-
tering the effective volume, Eq. (12), but do not vary it
with cosmology.

A simple rule of thumb can be derived for the minimal
resolution to achieve in order to neglect the influence of
redshift uncertainties. Given that we truncate the inte-
gral defined in the Fisher matrix at k+ = 0.1 h/Mpc to
exclude non-linear redshift distortions, this resolution ef-
fect will start to be significant when k⋆ ≡ H(z)/(cσz) ≈
k+. This yields σz ≈ 0.003 or R ≈ 300. This is near the
JDEM-PS minimal resolution, but this estimate is for
the worst-case scenario (k = k+, µ = 1, H(z) = H0), so
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redshift uncertainties should not be an issue for JDEM-
PS/BigBOSS. For experiments with larger redshift mea-
surement uncertainties, however, the effect on cosmology
determination can be significant as shown for the full nu-
merical computations in Table IX.

R = σ−1
z k⋆,0 (h/Mpc) BigBOSS JDEM-PS

20 0.0067 0.110 0.124

200 0.067 0.044 0.054

∞ ∞ 0.043 0.054

TABLE IX: Impact of the resolution R on σ(γ).

As expected, the BigBOSS/JDEM-PS values k⋆ =
0.067 − 0.67 h/Mpc are sufficient for the cosmology esti-
mation in our studies. However, two issues must also be
kept in mind: including information from k > 0.1 h/Mpc
would increase the resolution requirements, and high res-
olution plays a key role in cleanly selecting the galaxy
populations, e.g. avoiding line confusion in emission line
galaxies.

B. Non-linearities

We can examine how a better understanding of the
transition to the non-linear part of the power spectrum
could lead to an improvement in determining σ(γ). In-
stead of truncating the integral in Eq. (11) entering the
Fisher matrix at k+, we can choose to implement a
streaming model (see for example [33]), where we inte-
grate over all k but multiply the power spectrum by a
damping factor, either Lorentzian or Gaussian. This is
supposed to model an exponential or Gaussian proba-
bility distribution function for the peculiar velocities of
galaxies. We investigate the three forms of the small-
scale velocity damping factors:

Cutoff: Pnl(k, µ) = P (k, µ)Θ(k+ − k) (24)

Gaussian: Pnl(k, µ) = P (k, µ) e−(k/k+)2µ2

(25)

Lorentzian: Pnl(k, µ) =
P (k, µ)

1 + (k/k+)2µ2
(26)

where Θ is the Heaviside function. This is supposed to
model the Fingers of God effect. We use k+ = 0.1 h/Mpc
for all cases. Table X shows the effects on the determi-
nation of the gravitational growth index.

We see that the statistical uncertainty on γ is largest if
we simply cut out all translinear information, by about
a factor 2. Thus we have adopted the most conserva-
tive method to predict σ(γ); the information might not
be completely lost on translinear scales, but only atten-
uated by Finger-of-God effects. Adopting a Gaussian or
Lorentzian damping model allows extraction of some in-
formation, with the choice of model affecting the results
at the ∼ 25% level. However, an exponential or Gaus-
sian probability distribution function for the streaming

Case BigBOSS JDEM-PS

Cutoff 0.043 0.054

Gaussian 0.024 0.026

Lorentzian 0.019 0.021

TABLE X: The impact of different models for the translinear
damping due to peculiar velocities on the gravitational growth
index estimation σ(γ). To restrict to the translinear scales we
further truncate the power spectrum integral at k = 1 h/Mpc.

model is still not completely accurate, and along with
the reduced statistical uncertainty on γ could come a
systematic bias. Thus we retain the conservative, cutoff
method. Taking into account a halo model, for exam-
ple [34], could allow a more detailed investigation of the
proper treatment of the translinear regime.

C. Redshift Range and Survey Design

While the survey volume due to the solid angle
Ωsky simply scales the parameter estimation as σ(γ) ∝

1/
√

Ωsky in the statistical treatment without priors, the
influence of redshift range is more complex and interest-
ing. Since the galaxy population used also depends on
redshift we simultaneously investigate the influence of the
galaxy bias values.

Table XI shows the results for considering the popula-
tions, and their associated redshift ranges, one at a time
and also in combination with different values (0.8 vs. 1.2)
for the emission line galaxy population bias.

Populations BigBOSS JDEM-PS

LRG, bLRG = 1.7 0.067 0.115

EL, bEL = 0.8 0.574 0.187

EL, bEL = 1.2 0.503 0.197

LRG + EL, bEL = 0.8 0.043 0.054

LRG + EL, bEL = 1.2 0.042 0.053

TABLE XI: Impact of the redshift range and the associated
two different populations on σ(γ). The top three lines con-
sider a single population and its redshift range from Table I,
while the bottom two lines combine both populations and
their redshift ranges. The second vs. third, and fourth vs.
fifth, lines examine the effect of different values for bEL.

As found in [4], most of the constraint on γ comes
from the redshift range z <

∼ 1, which mostly corresponds
to the LRG population. The reason is simple: the cos-
mological information on γ enters the power spectrum
through the factor Ωm(z)γ , so at higher redshifts where
Ωm(z) is closer to 1, the sensitivity to γ decreases. The
value of the EL bias adopted does not have a significant
effect, especially when in combination with the low red-
shift, LRG sample. Furthermore, note that the EL only
case for JDEM-PS, which includes all the information
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from JDEM-PS itself and none of the data to be pro-
vided by BOSS, only determines σ(γ) ≈ 0.2, even though
the sample extends down to z = 0.7. For JDEM-PS, the
BOSS data enables an improvement of almost a factor 4
in the growth index parameter determination.

These consequences of redshift range raise an impor-
tant question: what is the science reach of the BigBOSS
survey if the EL sample is shifted from z = 1 − 2 to
z = 0.7 − 1.7? This not only changes the redshift range
of the EL sample information but creates an overlap be-
tween LRG and EL information. The generalization of
Eq. (11) to multiple galaxy populations [7, 35] reads:

Fij =
∑

XY

V0

2(2π)3

∫

d3k
∂PX

∂pi
C−1

XY

∂PY

∂pj
, (27)

where X and Y are indices describing pairs of galaxy pop-
ulations, and CXY is the covariance matrix of the power
spectra. Adapting the BigBOSS specifications from Ta-
ble I by shifting the EL sample to z = 0.7−1.7 retains the
science leverage and in fact delivers a mild improvement
of 8%:

BigBOSS standard : σ(γ) = 0.043 (28)

BigBOSS zEL = 0.7 − 1.7 : σ(γ) = 0.040 (29)

Moreover, a redshift maximum of 1.7 reduces the tech-
nical complexity of the data acquisition and analysis,
greatly ameliorating issues of line confusion and reduced
signal-to-noise that occur over z = 1.7 − 2. (Note that
for z > 2 Ly-α enters the spectral range and the issues
again disappear.) The overlap of LRG and EL popula-
tions with very different biases in the same redshift range
z = 0.7−1.0 also offers the possibility of crosscorrelation
and reduction of sample variance [35]. Thus, these results
motivate shifting the EL redshift range to z = 0.7 − 1.7,
achieving σ(γ) = 0.040 (and 0.030 with Stage III infor-
mation).

V. CONCLUSIONS

The three-dimensional distribution of large scale struc-
ture contains information on both the cosmological pa-
rameters and testing gravity. We have studied the capa-
bilities of next-generation power spectrum experiments
from the ground, BigBOSS, and from space, JDEM-PS,
to use the baryon acoustic oscillations, power spectrum
shape, and redshift space distortions to test standard cos-
mology.

The main conclusion is that the two experiments could
achieve comparable constraints. We emphasized the im-
portance of including simultaneously the parameters that

affect growth – the gravitational growth index character-
izing deviations from general relativity, the dark energy
equation of state value and its time variation, and neu-
trino mass. Including these and other cosmological pa-
rameters we estimate the uncertainty on determination
of the gravitational growth index to be 0.043 for Big-
BOSS, 0.054 for JDEM-PS, or 0.031 and 0.038 respec-
tively when combined with nearer-term, Stage III exper-
iments. This represents nearly an order of magnitude
improvement over Stage III knowledge.

We have also studied the survey characteristics and
confirm that the power spectrum at redshifts z <

∼ 1 has
strong leverage. This makes the luminous red galaxy
component of the survey quite important. Furthermore,
our results demonstrate that shifting the redshift range of
the emission line galaxy survey of BigBOSS from z = 1−2
to z = 0.7−1.7 can improve the constraints, while adding
benefits such as reduced technical complexity and line
confusion and increased signal-to-noise and the ability to
crosscorrelate galaxy populations of different biases.

Lyman-α forest spectra from BigBOSS quasars at z >
2, which we have neglected, will further advance the de-
termination of cosmological parameters.

The prospects for testing standard cosmology and in
particular general relativity are promising. Improved
understanding of the translinear density regime and
velocities would further extend the number of usable
power spectrum modes, while complementarity with
other Stage IV experiments utilizing supernova distances,
CMB measurements, and weak lensing data would give
powerful leverage on both the gravitational growth index
and other cosmological parameters. The capability of
probing beyond-Einstein gravity opens up a new window
for our understanding of cosmic acceleration and funda-
mental physics.
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Loève Eigenvalue Problems in Cosmology: How Should
We Tackle Large Data Sets?, 1997, ApJ 480, 22,
arXiv:astro-ph/9603021

[14] M. Tegmark, Measuring Cosmological Parameters with
Galaxy Surveys, 1997, Phys. Rev. Lett., 79, 3806,
arXiv:astro-ph/9706198

[15] H.A. Feldman, N. Kaiser, J.A. Peacock, Power Spectrum
Analysis of Three-Dimensional Redshift Surveys, 1994,
ApJ, 426, 23, arXiv:astro-ph/9304022

[16] W.J. Percival, M. White, Testing Cosmological Structure
Formation using Redshift-space Distortions, 2009, MN-
RAS, 393, 297, arXiv:0808.0003

[17] N. Padmanabhan, in http://www-group.slac.stanford.
edu/ppa/Reviews/p5/P5 2008 Talks/white.pdf, slide 15

[18] M. Shoji et al., Extracting Angular Diameter Dis-
tance and Expansion Rate of the Universe from Two-
dimensional Galaxy Power Spectrum at High Redshifts:

Baryon Acoustic Oscillation Fitting versus Full Model-
ing, 2009, ApJ, 693, 1404, arXiv:0805.4238

[19] D.J. Eisenstein et al., Detection of the Baryon Acous-
tic Peak in the Large-Scale Correlation Function of
SDSS Luminous Red Galaxies, 2005, ApJ 633, 560,
arXiv:astro-ph/0501171

[20] A. Lue, R. Scoccimarro, G.D. Starkman, Probing New-
ton’s Constant on Vast Scales: DGP Gravity, Cosmic Ac-
celeration and Large Scale Structure, 2004, Phys. Rev. D
69, 124015, arXiv:astro-ph/0401515

[21] G. Dvali, G. Gabadaze, M. Porrati, 4D Gravity on a
Brane in 5D Minkowski Space, 2000, Phys. Lett. B 485,
208, arXiv:hep-th/0005016

[22] C. Deffayet, G. Dvali, G. Gabadadaze, Accelerated Uni-
verse from Gravity Leaking to Extra Dimensions, 2002,
Phys. Rev. D 65, 044023, arXiv:astro-ph/0105068

[23] D. Schlegel et al., BigBOSS: The Ground-Based Stage IV
Dark Energy Experiment, 2009, arXiv:0904.0468

[24] N. Gehrels, Report on the Science Coordination Group
activities for the Joint Dark Energy Mission, 2009,
http://jdem.gsfc.nasa.gov/docs/SCG Report final.pdf

[25] D. Schlegel et al., The Baryon Oscillation Spectroscopic
Survey: Precision measurements of the absolute cosmic
distance scale, 2009, arXiv:0902.4680

[26] A. Slosar, BigBOSS vs JDEM/BAO Figures-of-Merit,
2009, unpublished

[27] M. Doran, CMBEASY, an Object Oriented Code for the
Cosmic Microwave Background, 2005, JCAP, 0510, 011,
arXiv:astro-ph/0302138

[28] G. Hinshaw et al., Five-Year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Data Process-
ing, Sky Maps, and Basic Results, 2009, ApJ Suppl., 180,
225, arXiv:0803.0732

[29] U. Seljak et al., 2009, in preparation
[30] http://rkb.home.cern.ch/rkb/AN16pp/node40.html
[31] M. Maltoni, T. Schwetz, Three-flavour Neutrino Oscilla-

tion Update and Comments on Possible Hints for a Non-
zero θ13, 2008, PoS(idm2008)072, arXiv:0812.3161

[32] B. Kayser, Neutrino Mass, Mixing, and Flavor Change,
in Review of Particle Properties, 2008, C. Amsler et al.
(Particle Data Group), Phys. Lett. B, 667, 1

[33] P.J.E. Peebles, The Large-Scale Structure of the Uni-
verse, 1980, Princeton University Press

[34] J.L. Tinker, Redshift-Space Distortions with the Halo
Occupation Distribution II: Analytic Model, 2007, MN-
RAS, 374, 477, arXiv:astro-ph/0604217

[35] P. McDonald & U. Seljak, How to Measure
Redshift-space Distortions without Sample Variance,
arXiv:0810.0323

http://arxiv.org/abs/astro-ph/0208037
http://arxiv.org/abs/0709.1113
http://arxiv.org/abs/0802.1944
http://arxiv.org/abs/astro-ph/9811184
http://arxiv.org/abs/0810.1518
http://arxiv.org/abs/0908.2243
http://arxiv.org/abs/0909.4544
http://arxiv.org/abs/astro-ph/0507263
http://arxiv.org/abs/astro-ph/0701317
http://arxiv.org/abs/0901.0721
http://arxiv.org/abs/astro-ph/9603021
http://arxiv.org/abs/astro-ph/9706198
http://arxiv.org/abs/astro-ph/9304022
http://arxiv.org/abs/0808.0003
http://www-group.slac.stanford
http://arxiv.org/abs/0805.4238
http://arxiv.org/abs/astro-ph/0501171
http://arxiv.org/abs/astro-ph/0401515
http://arxiv.org/abs/hep-th/0005016
http://arxiv.org/abs/astro-ph/0105068
http://arxiv.org/abs/0904.0468
http://jdem.gsfc.nasa.gov/docs/SCG_Report_final.pdf
http://arxiv.org/abs/0902.4680
http://arxiv.org/abs/astro-ph/0302138
http://arxiv.org/abs/0803.0732
http://rkb.home.cern.ch/rkb/AN16pp/node40.html
http://arxiv.org/abs/0812.3161
http://arxiv.org/abs/astro-ph/0604217
http://arxiv.org/abs/0810.0323

